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Omar M. Knio, Verifying and assessing the performance of the perturbation strategy in polynomial
chaos ensemble forecasts of the circulation in the Gulf of Mexico, Ocean Modelling (2018), doi:
https://doi.org/10.1016/j.ocemod.2018.09.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ocemod.2018.09.002
https://doi.org/10.1016/j.ocemod.2018.09.002


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• Polynomial Chaos methods are used to quantify uncertainties in ocean

forecasting.

• The EOF-based perturbations lead to realistic uncertainty representa-

tion.

• Two EOFs for initial condition perturbations captures Loop Current

uncertainty.

• The analysis of the SSH PDFs shows a strong non-Gaussian signal.
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Abstract

We present an analysis of two recent efforts aimed at quantifying the uncer-

tainties in a 30-day HYbrid Coordinate Ocean Model forecast of the circu-

lation in the Gulf of Mexico, with particular emphasis on the separation of

Loop Current Eddy Franklin, using Polynomial Chaos methods. The analysis

herein explores whether the model perturbations lead to realistic representa-

tion of the uncertainty in the Gulf Circulation. Comparisons of model output

with Sea Surface Height and current mooring data show that the observa-

tional data generally falls within the envelope of the ensemble and that the

modal decomposition delivers “realistic” perturbations in the Loop Current
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region. We use information theory metrics to quantify the information gain

and the computational trade-offs between different wind and initial condi-

tions perturbation modes. The relative entropy measures indicate that two

modes for initial condition perturbations are enough, in our model configu-

ration, to represent the uncertainty in the Loop Current region; while two

modes for wind forcing perturbations are necessary in order to estimate the

uncertainty in the coastal zone. The ensemble statistics are then explored

using the Polynomial Chaos surrogate and the newly developed contour box-

plot methods.

Keywords: Uncertainty quantification, polynomial chaos, relative entropy,

ocean modeling, data depth

1. Introduction1

The 2010 Deepwater Horizon oil spill underscored the need for reliable2

oceanic and atmospheric forecasts in order to predict the trajectory and3

evolution of the oil spill. Forecasting systems are, however, inherently uncer-4

tain because of uncertainties in, among other things, the input data used to5

produce these forecasts such as initial conditions, boundary conditions, and6

subgrid parametrization. Useful forecasts need to quantify the uncertainties7

in their predictions so that the reliability of the forecast can be assessed.8

The present article analyzes the performance of two recent efforts (Iskan-9

darani et al., 2016a; Li et al., 2016) that have relied on Polynomial Chaos10

(PC) methods (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002; Le11

Mâıtre and Knio, 2010; Iskandarani et al., 2016b) to quantify the uncer-12

tainties in forecasting the circulation in the Gulf of Mexico stemming from13
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uncertainties in the initial conditions alone (Iskandarani et al., 2016a) or in14

combination with wind forcing uncertainties (Li et al., 2016). The fore-15

cast timeline covers the oil spill period from May 1–30 2010 and coincides16

with an extended Loop Current (LC) that threatened to spread the oil along17

the south Florida coast and, eventually, the Eastern Seaboard of the United18

States. Fortunately, a LC detachment (LC eddy Franklin) occured and con-19

fined the oil to the northern and central parts of the Gulf of Mexico. The20

uncertainty analysis explores primarily whether the uncertainty in the LC21

location can be quantified given the uncertainties in the forecast model’s22

data.23

The studies in Iskandarani et al. (2016a) and Li et al. (2016) were based24

on perturbing the model fields (initial conditions and wind forcing) with25

space-time patterns obtained from an Empirical Orthogonal Function (EOF)26

decomposition where the amplitudes of these patterns were considered un-27

certain parameters. The PC formalism was then applied to propagate the28

uncertainties forward efficiently by: first, running an ensemble of simulations29

using HYbrid Coordinate Ocean Model (HYCOM) to sample the uncertain30

parameter space; second, constructing polynomial-based model-surrogates31

that accurately represent the changes in model outputs caused by changes in32

model inputs; and third, using these surrogates to perform a reliable and ef-33

ficient statistical analysis once the validity of the surrogates was established.34

The choices made during the course of the uncertainty analysis in those35

two articles, and which will be detailed in later sections, have raised a number36

of issues that we wish to address here concerning the “realism” of the un-37

certainty analysis, the computational and information trade-offs in choosing38
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different uncertain inputs, and the exploration of the statistical information39

conveyed by the PC approach. Specifically, in the present study, we 1) as-40

sess the performance of the EOF-perturbed PC-ensemble by comparing it to41

observational data, both at the surface and at depth, to verify whether the42

measurement data falls within the envelope of the PC ensemble; 2) leverage43

the ability of PC methods to deliver output Probability Density Function44

(PDF) to quantify, using information theoretical measures, the uncertainty45

lost by omitting some uncertain inputs or by limiting their variability. A sec-46

ond aim of this paper is to explore the statistics of the ensemble. In order to47

obtain the most representative ensemble member and to identify the outliers,48

contour boxplot (Whitaker et al., 2013), a generalization of the conventional49

boxplot, is applied to the ensemble. Furthermore, the output PDFs deliv-50

ered by the PC method are used to explore the non-Gaussian statistics in51

the vicinity of the LC region.52

In summary, the present article is a follow on to Iskandarani et al. (2016a)53

and Li et al. (2016). Iskandarani et al. (2016a) identified the two leading EOF54

modes whose amplitudes represented the uncertainties in the strength of an55

LC Frontal Eddy; these modes were subsequently used to perturb the initial56

conditions of a control forecast. Iskandarani et al. (2016a) relied on a 4957

member ensemble to build surrogates of model outputs, validated their ac-58

curacy and used them for the statistical analysis. Li et al. (2016) expanded59

the previous study by including additional EOFs modes in the initial con-60

ditions perturbations as well as perturbations to the surface wind forcing.61

Their parameter space was eight-dimensional and required a compressed-62

sensing based procedure to construct model surrogates using a 798-member63
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ensemble. A variance-based sensitivity analysis showed that uncertainties in64

the initial conditions dominated the forecast uncertainties in the deep parts65

of the Gulf of Mexico while wind forcing uncertainties were the dominant66

contributors on the continental shelves. The present study compares the en-67

sembles simulations to observations to assess whether the EOF perturbations68

were adequate at representing the uncertainties in the forecast, performs a69

cost-benefit analysis regarding the enlargement of the uncertain parameter70

space and perform additional analysis regarding the statistical distribution71

of sea surface height at the end of the forecast. No additional experiments72

were performed in the present study.73

The layout of this paper is as follows. Section 2 provides a quick overview74

of the LC dynamics in the Gulf of Mexico, summarizes the experimental75

setup of the two uncertainty experiments, provides a brief description of the76

PC methodology and describes the specification of the input uncertainties.77

Section 3 compares the ensemble results against observational data. The78

information trade-offs between the different choices of the sources and vari-79

ability of the input uncertainties are shown in section 4. Section 5 presents80

the contour boxplot of the LC edge and the sea surface height (SSH) PDFs.81

Finally, we conclude with a summary section.82

2. Model and ensemble prediction83

The Gulf of Mexico, where the Deepwater Horizon oil spill took place,84

is a suitable test bed for uncertainty studies. It is a well-observed regional85

sea that presents many dynamical features typical of the deep ocean such as86

currents and eddying jets. As shown in Figure 1, the LC is a particularly87
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dominant feature of the circulation in the Gulf of Mexico as it flows from88

the Yucatan Channel between Mexico and Cuba, to the Straits of Florida89

between Cuba and the Southeastern U.S. The LC presents a time varying90

extension, from a retracted path at the south of the basin, to an extended one91

reaching the edge of the continental shelf in the northeastern Gulf. When it is92

extended, the LC sheds a large, anticyclonic eddy, called LC Eddy (indicated93

by the anticyclonic arrow, in black, in the western Gulf), which then drifts94

westward, and the LC retracts to the south. This shedding sequence often95

implies temporary detachments of the LC Eddy from the current, before final96

separation. Small, cyclonic eddies, also called LC Frontal Eddies (shown in97

white arrows), at the edge of the LC play an active role in necking down98

and chopping the extended LC, leading to the LC Eddy detachments or99

separation (Zavala-Hidalgo et al., 2003; Schmitz, 2005; Athié et al., 2012;100

Le Hénaff et al., 2012a, 2014). The Deepwater Horizon oil spill took place101

during such a LC Eddy shedding sequence, and the fate of the spilled oil102

was partly influenced by the LC evolution and its frontal dynamics (Walker103

et al., 2011). The model setup described below was configured primarily to104

investigate the uncertainties in this eddy shedding scenario.105

2.1. HYCOM setup106

The forecast model is the Hybrid Coordinate Ocean Model (HYCOM).107

The model configuration is the same as GOMl0.04 expt 20.1 run by the Navy108

Research Laboratory (NRL) for the near-real time system in the period 2003-109

2010. The details of this configuration can be found at HYCOM website1.110

1https://hycom.org/data/goml0pt04/expt-20pt1 (last access on July 3rd, 2018)

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The model has a horizontal grid resolution of 1/25 degree and 20 vertical lay-111

ers. Since the vertical layers in HYCOM are hybrid, their thickness changes112

at each time step. In this configuration, there are more vertical layers to-113

ward the surface, with their depth, in the Eastern Gulf, ranging from 1.5m114

to about 2700 m in the Eastern Gulf. The computational domain is open115

along portions of its southern, eastern and northern boundaries, where val-116

ues are provided by a lower resolution 1/12 degree North Atlantic HYCOM117

simulation (Chassignet et al., 2007). This model configuration has been used118

extensively in the literature, especially in studies of the Deepwater Horizon119

oil spill (e.g. Mezić et al. (2010); Valentine et al. (2012); Le Hénaff et al.120

(2012b); Paris et al. (2012)). The model is forced by the 27 km resolution121

Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) atmo-122

spheric products. The initial condition for the model is from the expt 20.1123

(McDonald, 2006) near-real time simulation run at NRL, which includes data124

assimilation. The model assimilates available satellite altimeter observations125

(along track data altimetry obtained via the NAVOCEANO Altimeter Data126

Fusion Center), satellite and in situ sea surface temperature (SST) as well127

as available in situ vertical temperature and salinity profiles from XBTs,128

ARGO floats and moored buoys. The model is then integrated forward in129

time without data assimilation, in forecast mode, for 30 days from May 1,130

2010 to May 30, 2010.131

2.2. PC surrogates132

We give a brief overview of PC methods in order to set the stage for the133

subsequent analysis; more background information can be found in Le Mâıtre134

and Knio (2010); Iskandarani et al. (2016b) and references therein. The PC135
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paradigm is based on describing the dependence of a specific model output,136

say M(x, t, ξ) where ξ represents the vector of uncertain inputs and x and t137

refer to space and time, by a spectral series MP of the form:138

M(x, t, ξ) ≈MP (x, t, ξ) =
P∑

k=0

M̂k(x, t) Ψk(ξ) (1)

where the Ψm(ξ) are the user specified multi-dimensional basis functions139

(usually tensorized orthogonal polynomials from the Askey family,(Xiu and140

Karniadakis, 2002)), and the M̂k(x, t) are (P + 1) coefficients. These coef-141

ficients are determined by sampling the parameter space ξ and minimizing142

the error ‖M −MP‖. Different versions of PC methods can be derived by143

choosing different error norms and sampling strategies. For example, the144

traditional Galerkin approach uses the so-called L2 norm:145

‖M −MP‖22 =

∫
(M −MP )2 ρ(ξ) dξ (2)

where ρ(ξ) is the probability density function of the uncertain inputs ξ. This146

approach takes advantage of the orthogonal basis and uses quadrature rules147

to calculate the coefficients as:148

M̂k =

∑Q
q=1 Ψk(ξq)M(ξq)ωq∑Q
q=1 Ψk(ξq)Ψk(ξq)ωq

(3)

where ξq and ωq are multi-dimensional quadrature points and weights (Le149

Mâıtre and Knio, 2010; Iskandarani et al., 2016b). Other approaches to de-150

termining the coefficients include spectral collocation and regression (useful151

when the model output M is noisy, see Iskandarani et al. (2016b) for a com-152
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parison of these different techniques). Regardless of the specific approach to153

calculate the coefficients, the PC series requires sampling of the parameter154

space to compute M(ξq), and this constitutes the most expensive portion155

of the calculation as each sample requires a model run with the uncertain156

input set to ξq. In general the cost increases exponentially with the dimen-157

sion of the uncertain input ξ and must be mitigated by resorting to either158

sparse quadrature rules or sparse series construction. Once the coefficients159

M̂k are available (and the series approximation errors have been verified to160

be small), the spectral series in equation (1), often referred to as a surrogate161

or emulator, can be used in lieu of the model to estimate the response of162

the model MP to changes in the uncertain input data ξ. The PC approach163

provides an efficient way to propagate model uncertainties, quantify princi-164

pal contributors to the model output uncertainties and infer the posterior165

distributions of uncertain inputs given observational data. PC methods have166

been successfully applied to many different uncertainty quantification tasks167

for oceanic and atmospheric simulations (Thacker et al., 2012; Li et al., 2016;168

Iskandarani et al., 2016a; Winokur et al., 2013; Wang et al., 2015; Alexan-169

derian et al., 2012; Sraj et al., 2013).170

2.3. PC input uncertainties171

The two HYCOM ensembles in Iskandarani et al. (2016a) and Li et al.172

(2016) relied on reduced state space methods (Kleeman, 2011) to character-173

ize the input uncertainties, so that the variance of the uncertain inputs was174

maximized while retaining as few uncertain inputs as possible. More specif-175

ically, EOF decompositions were used to identify modes of variability in the176

initial conditions and wind forcing. The spatial patterns of the perturbation177
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were thus provided by the EOFs while the time series were associated with178

their principal components.179

The EOF modes used to perturb the initial conditions were obtained from180

a multivariate EOF analysis of two weeks of daily outputs of the operational,181

and data-assimilated, simulation prior to our experiment. LC processes and182

their frontal instabilities are the dominant contributors to variability during183

this 14-day time period, and contamination of the EOF modes by other,184

longer time scale processes is thus minimized. Iskandarani et al. (2016a)185

analyzed the first two of these EOF modes and showed that their addition186

to the initial condition of the unperturbed run led to a stronger frontal eddy187

in the northeast corner of the extended LC and an early separation of a LC188

Eddy, whereas their subtraction had the opposite effect. The wind forcing189

EOF modes were calculated from a 2 month time-series (May and June,2010)190

of a 27 km resolution COAMPS simulation. The EOF analysis was performed191

on the wind velocity vectors (u wind and v wind) and then projected onto the192

wind speed and the wind stress vectors, which are the actual components of193

the HYCOM wind forcing inputs. Figure 2 shows the cumulative variance of194

each mode identified in the 2-week EOF decomposition of daily operational195

HYCOM outputs (left panel), and in the 60-day EOF decomposition of the196

COAMPS winds.197

The initial conditions and wind-forcing fields can now be constructed as198
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the sum of products of spatial patterns and time series as follows:199

u(x, t = 0, ξ) = u0(x) + αic
Kic∑

k=1

ξick Uk(x) (4)

f(x, t, ξ) = f0(x, t) + αw
Kw∑

k=1

ξwk λ
w
k (t)Fk(x) (5)

where u(x, t = 0, ξ) is the perturbed initial condition field, u0 is the unper-200

turbed initial field, αic is a coefficient that controls the size of the perturba-201

tion, Uk(x) are the EOFs obtained from the decomposition of the two-week202

HYCOM daily output, −1 ≤ ξick ≤ 1 are standardized uncertain input ran-203

dom variables controlling the amplitude of the EOFs modes, and Kic refers204

to the number of EOF modes retained. The terms f , f0, α
w, Fk and Kw are205

the analogous quantities for the wind-forcing field. The λwk in the wind forc-206

ing perturbations refer to the principal components of the two-month wind207

time series.208

The exploratory study in Iskandarani et al. (2016a) included only the209

first two initial condition EOF modes in order to keep the computational210

cost tractable; the vector of uncertain input was ξ> = (ξic1 , ξ
ic
2 ) with Kic = 2211

and Kw = 0. Li et al. (2016) increased the number of initial conditions212

modes to four to explore the impact of additional variability on the forecast213

uncertainty, and included four wind forcing modes to account for additional214

sources of uncertainties. The uncertain input vector consisted thus of ξ> =215

(ξic1 , ξ
ic
2 , ξ

ic
3 , ξ

ic
4 , ξ

w
1 , ξ

w
2 , ξ

w
3 , ξ

w
4 ) with Kic = 4 and Kw = 4. Note that Li et al.216

(2016) decreased the size of their perturbation by setting αic = 0.8 and217

αw = 0.04 in order to avoid repeated crashes of the forward model when218
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the full perturbation was applied. The PC approach treats the perturbation219

amplitudes as independent and continuous random variables characterized220

by their PDFs which were assumed to be uniform2.221

The focus on initial conditions and wind forcing uncertainties in the stud-222

ies of Iskandarani et al. (2016a) and Li et al. (2016) is largely a compromise223

between computational cost3, and the desire to account for most of the uncer-224

tain processes influencing LC dynamics. For example, uncertainty in bound-225

ary conditions was omitted since the domain boundaries were too remote to226

influence the LC within a 30 day time frame4. Uncertainty in the wind field227

was deemed the second most important contributor to LC dynamics which228

was then included in Li et al. (2016). Additional sources of uncertainty,229

such as surface heat-flux, could be included at the expense of increasing the230

dimension of the uncertain space and the sampling cost.231

The PC surrogate in Iskandarani et al. (2016a) relied on a Galerkin pro-232

jection with sampling on the Gauss-Legendre quadrature points to determine233

the coefficients, and was shown to be valid for a period of 40 days when val-234

idated against independent model simulations. The eight-dimensional space235

of Li et al. (2016) required a different surrogate construction approach and236

the latter was built using a Basis Pursuit Denoising5 algorithm. The va-237

2Specifying these PDFs can be difficult in practice due to the scarcity of observational
data. The availability of the surrogate, however, allows the user to explore the effect of
different input PDFs at little extra cost.

3The cost increases quickly with the number of uncertain inputs.
4Roughly 60 days are needed for a perturbation in the boundary condition to reach the

LC region (Thacker et al., 2012).
5 The basis pursuit denoising algorithm seeks to find the shortest series possible whose

coefficients minimize the square of the surrogate error; it mitigates the cost of sampling an
8-dimensional space to compute the M̂k’s (a Gauss quadrature procedure as in Iskandarani
et al. (2016a) would have required 78 = 5, 764, 801 samples).
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Iskandarani et al. (2016a) Li et al. (2016)

uncertain inputs Initial Conditions Initial Conditions
& Wind Forcing

# of IC EOF modes Kic 2 4

# of WF EOF modes Kw 0 4

dimension of ξ-space 2 8

perturbation scale αic 1 0.8

perturbation scale αw 0 0.04

input pdf ρ(ξ) uniform: 2−2 uniform: 2−8

surrogate basis Legendre polynomials Legendre polynomials

Coefficient Galerkin Projection Basis Pursuit Denoising

Sampling Gauss Quadrature Latin Hypercube

Ensemble size 49 798

Table 1: Summary of the two uncertainty quantification experiments.

lidity of the surrogates was also established by comparing their estimates238

to those of an independent validation ensemble. The analyses herein focus239

on the first 30 days of the simulation when both surrogates delivered accu-240

rate representation of the model output. Table 1 lists the settings for the241

two uncertainty quantification analyses in Iskandarani et al. (2016a) and Li242

et al. (2016); the reader is referred to these articles for more details on the243

surrogate construction and their validation.244

The goals of the present study is to evaluate the perturbation strategy245

used to generate these ensembles and to compare the evolution of the individ-246

ual members in relation to the evolution of the observed LC system, and to247

assess whether the increase in the number of uncertain parameters, and the248

associated increase in the sampling requirements, yield to a better estimate249

of the output uncertainties. Furthermore, the output PDFs of the ensembles250

are computed and compared to those of the climatological observations.251
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3. Model-data comparison252

For a “good” ensemble prediction, the forecast uncertainties should be253

properly represented (Slingo and Palmer, 2011) such that the true evolution254

appears to be a plausible realization in the ensemble. In order to assess255

whether the EOF perturbations satisfy this requirement, we compare the256

envelop of the model ensembles against observational data both at the surface257

and at depth.258

3.1. Comparison against satellite SSH259

For the surface model-data comparison, we use the AVISO gridded satel-260

lite SSH data optimally interpolated to a 1/4◦ × 1/4◦ grid (Le Traon et al.,261

1998). Specifically, we compare the edges of the LC and the LC eddies, which262

are defined by the contours of the 17cm SSH anomaly with respect to the263

basin mean value. Leben (2005) introduced this 17 cm anomaly as a reliable264

indicator of the Loop Current edge’s position by comparing it to other crite-265

ria that were traditionally used before. It is now a commonly used metric to266

identify the edge of the LC (e.g., Le Hénaff et al. (2012a); Dukhovskoy et al.267

(2015)). Figure 3 shows time snapshots of the LC edge every 10 days starting268

from May 1, 2010 for both HYCOM ensembles. The background color is the269

gridded satellite SSH data. The LC edge from the HYCOM ensemble mem-270

bers (black contours) are compared against that from the gridded satellite271

SSH data (white contours).272

A basic observation for both ensembles is that the LC contour derived273

from satellite data (shown in white contours in Figure 3) generally fall within274

the envelope of the HYCOM ensemble contours (shown in black) near the275
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LC region. This indicates a “good” ensemble since the observational data276

appears to be a plausible realization of the model ensemble. On day 30,277

it is clear that the LC eddy shedding process is affected by the ensemble278

perturbation, in which several ensemble members have already shed an eddy279

while others have not. The difference between these two HYCOM ensembles280

is visually small, which is a first indication that the additional uncertainty281

in the initial conditions and in the wind forcing do not contribute much to282

the uncertainty in the LC edge position.283

Both ensembles, however, deviate from the observational data in the vicin-284

ity of a detached LC Eddy in the western part of the Gulf of Mexico; more-285

over, the deviation increases with time (this is not too surprising as each286

ensemble member is a “free” run without data assimilation). The EOF per-287

turbations in both the initial conditions and the wind forcing seem to have288

missed the local uncertainty in the vicinity of the western LC Eddy. We289

speculate that the reason for this is, first, mainly concerned with initial con-290

ditions uncertainties; and second, that the EOF decomposition of the initial291

conditions picked up the largest variability in the eastern side of the basin,292

namely the one associated with LC dynamics. As a result local variability293

away from the most dynamic region might not have been captured in the294

first four EOF modes. The PC paradigm, with its focus on establishing a295

functional relationship between the uncertain inputs and the model output,296

requires that modelers be careful and deliberate in selecting their input per-297

turbations. It also suggests that a more tailored decomposition (or model298

reduction method) would be useful if the user is interested in quantifying the299

uncertainties in multiple regions simultaneously.300
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3.2. Comparison against mooring data301

In order to compare the model with observational data at depth, we302

compare both HYCOM ensembles against 9 full-depth mooring observations303

deployed by the Bureau of Ocean Energy Management (BOEM)/Science Ap-304

plications International Corporation (SAIC) (Hamilton et al., 2016) during305

the mutual HYCOM simulation period (May 1, 2010 - May 30, 2010). Here,306

we compare the mean and standard deviation ellipses of the point velocity307

for the entire 30 days, like in Xu et al. (2013). Figure 4 shows the comparison308

of the mean and standard deviation ellipses between the HYCOM ensemble309

members and the mooring data at different depths. In each subfigure, the310

mean velocity vectors of the ensemble members are shown in black and the311

standard deviation ellipses of the ensemble members are represented in red.312

The mean and standard deviation ellipses of the mooring observations are in313

blue. The mooring data falls in general within the envelope of the HYCOM314

ensembles at different depths; this indicates that the two ensembles at depth315

capture reasonably well the observations. The 49-member PC ensemble, with316

only two initial conditions EOF perturbations, underestimates the variabil-317

ity observed in the two most northeastern moorings at the 100m and 300m318

depths, whereas it seems to be well-represented in the 798 member ensemble.319

Both at the surface and at depth, the ensembles are “realistic” as evi-320

denced by the model-data comparison: the ensembles captured the observed321

evolution, especially in the targeted LC region. Regarding the LC edge, the322

small ensemble can capture similar amount of variability compared with the323

large ensemble at the surface and at depth.324
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4. Relative Entropy325

The uncertainty experiment in Li et al. (2016) was largely motivated326

by two considerations: first to explore the impact of including additional327

EOF modes, and, second, to include other sources of input uncertainties,328

specifically wind forcing uncertainties. Other sources of uncertainty, such as329

surface heat flux, river-runoff or open boundary conditions, were deemed to330

be less important or too remote for short term forecasting, and were thus331

not considered. The enlargement of the uncertain parameter space increases332

the sampling requirement substantially, and the natural question is whether333

the variability “gained” in the output, alternatively the missed uncertainties,334

justifies the increased sampling cost. To address this question, we attempt335

to quantify this variability loss by considering various scenarios where the336

dimension of the uncertain input space is reduced. Note that the reduction337

can be achieved either by discarding high order EOF modes and retaining338

only the leading order ones, or by supressing independent (initial conditions339

or wind forcing) sources of input uncertainty.340

We leverage the ability of PC methods to deliver output PDFs to quantify341

the variability loss using an information theoretic measure, relative entropy342

(Kullback and Leibler, 1951), which measures the “distance” between two343

probability density functions p and q. Relative entropy can be defined in344

discrete form as follows (Kleeman, 2002):345

D(p, q) =
K∑

i=1

pi log

(
pi
qi

)
(6)

where p and q denote the PDFs of two distributions, i is the discrete bin346
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index, and K is the total number of bins. The relative entropy is a measure347

of “distance” between the reference PDF, q, and the PDF p; it is zero when p348

and q are identical and increases as they grow apart. In what follows q refers349

to the output PDF that is obtained by including all uncertain parameters350

whereas p refers to the output PDF that is obtained by restricting the number351

of uncertain inputs. The relative entropy D(p, q) thus quantifies the amount352

of variability lost by restricting the input uncertainty space.353

The discrete PDFs are calculated as follows: a large number of samples is354

drawn from a PC surrogate, the range of a model variable (SSH for example)355

is then divided into bins and the probability of a specific bin is set to the356

number of samples in this bin divided by the total number of samples, i.e.357

pi =
Ni

K∑
i=1

Ni

(7)

where Ni represents the number of samples in bin i, and K is the number358

of bins. We use the PC surrogate to generate a large number of samples359

(100,000) and set K = 20 for all relative entropy calculations6. The PC360

surrogate used here is the one constructed from the large ensemble since it has361

already been built and validated (Li et al., 2016), and since it encompasses362

the largest uncertain input space. Table (2) displays several scenarios of363

restricting the uncertain input space.364

6Experimentation has shown that our results are not sensitive to K when K ≥ 20.
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Scenarios Initial Condition Wind Forcing
0) Reference calculation (ξic1 , ξ

ic
2 , ξ

ic
3 , ξ

ic
4 ) (ξw1 , ξ

w
2 , ξ

w
3 , ξ

w
4 )

1) omitting high order EOF modes (ξic1 , ξ
ic
2 , 0, 0) (ξw1 , ξ

w
2 , 0, 0)

2) only leading IC EOF modes (ξic1 , ξ
ic
2 , 0, 0) (0, 0, 0, 0)

3) only leading wind EOF modes (0, 0, 0, 0) (ξw1 , ξ
w
2 , 0, 0)

4) only 1st IC EOF modes (ξic1 , 0, 0, 0) (0, 0, 0, 0)
5) only 2nd IC EOF modes (0, ξic2 , 0, 0) (0, 0, 0, 0)

Table 2: Left column: Different uncertainty perturbation scenarios. Middle colum: The
range of the initial condition uncertain inputs variables |ξici | ≤ 1 where ξici = 0 means
no perturbation. Right column: The range of the wind forcing uncertain inputs variables
|ξwi | ≤ 1 where ξwi = 0 means no perturbation.

4.1. Results for sea surface height365

We first investigate the variability loss caused by retaining two EOF366

modes only instead of four (scenario 1 in table 2), for both sources of uncer-367

tainty. Figure 5.a shows the time evolution of the relative entropy between368

the reference scenario that perturbs all eight EOF modes and the scenario369

that perturbs only the first two leading EOF modes of each uncertain source.370

The results show that, for the time span considered, little variability is lost371

by ignoring the uncertainty due to higher EOF modes (modes three and four372

of each uncertain source), and that there is very little gain in expanding the373

uncertainty space to include these higher order modes.374

Next, we investigate the variability loss caused by omitting uncertainty375

in the wind forcing. Since Figure 5.a shows that the high order EOF modes376

contribute little to the information content of the SSH PDF, we focus only377

on the low order EOF modes here. Figure 5.b shows the variability loss by378

omitting uncertainty in the wind forcing (scenario 2 in table 2), in which379

the ensemble that perturbs only the first two initial condition EOF modes380

is compared with the fully perturbed ensemble. The impact of omitting the381
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wind forcing EOF modes is mainly in the coastal region and little influence382

can be found in the LC region and the western Gulf of Mexico at day 30.383

The variability loss by omitting the initial condition EOF modes is shown384

in Figure 5.c (scenario 3 in table 2). The coastal signal disappears in this385

case, which indicates that the first 2 wind forcing EOF modes dominate SSH386

signal in the coastal region. Instead, a strong signal is observed in the LC387

region and its magnitude grows as time evolves, which indicates that the388

initial condition uncertainty is the dominant contributor to uncertainty in389

the LC region. These results are consistent with the analysis of variance390

in Li et al. (2016), in which the SSH in the LC region is more sensitive to391

the initial condition EOF perturbation modes while in the coastal region the392

SSH is more sensitive to the wind forcing EOF modes.393

Since the first two initial condition EOF modes contribute the most to394

the SSH variability in the deep Gulf of Mexico, we further investigate the395

influence of each individual initial condition EOF mode. Figure 5.d shows396

the SSH variability loss by retaining only the 1st initial condition EOF mode397

and Figure 5.e shows the SSH variability loss by retaining only the 2nd initial398

condition EOF mode. Without the 2nd initial condition EOF mode (shown399

in Figure 5.d), the SSH variability loss is localized in the north side of the LC400

, especially at day 30. Without the 1st initial condition EOF mode (shown in401

Figure 5.e), the SSH variability loss is substantial in a localized region along402

the LC and its amplitude grows with time. In the deep Gulf of Mexico, two403

initial condition EOF modes are necessary in order to capture most of the404

SSH variability.405

In summary, for SSH, the variability loss caused by retaining only the406
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two leading EOF modes for initial condition and wind forcing uncertainties407

is rather negligible. Additionally, the variability loss by omitting wind forcing408

input uncertainty is small in the LC region but is quite large in the coastal409

zone. Thus, this posterior analysis suggests that a more optimal ensemble410

could have been designed by retaining only the first two leading EOF modes411

of initial conditions and wind forcing uncertainties. These results also in-412

dicate that the small HYCOM ensemble used in Iskandarani et al. (2016a),413

that perturbs only the first two initial condition EOF modes, is a suitable414

choice for studying the ensemble statistics in the LC region as we do in the415

following section. It should be noted that the relative entropy approach here416

could be generalized to any ensemble simulations to investigate the balance417

between the size of the ensemble and the information content contained in418

the ensemble.419

5. Ensemble statistics420

5.1. Ensemble visualization421

Ensemble simulations provide us with a way to derive statistics of the422

model, which leads to an estimate of the confidence of the model prediction.423

However, mining useful information from the ensemble can be challenging424

since ensemble simulations usually involve a large number of single model425

runs. The recently developed contour boxplot (Whitaker et al., 2013), built426

on the notion of data depth, enables us to extract valuable information from427

an ensemble. Here, we are particularly interested in answering: 1) what is428

the most representative ensemble member? 2) what are the outliers of the429

ensemble?430
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Simply speaking, the contour boxplot can be considered as a generaliza-431

tion of the conventional boxplot. Both of these methods are designed for432

order statistics which requires an ordering of the data. The difference be-433

tween conventional boxplot and contour boxplot is that the former can only434

be applied to scalar quantities while the latter can be applied to functions435

and contours. At the heart of the contour boxplot, a measure of centrality436

is defined by the concept of data depth proposed from the statistics commu-437

nity (Whitaker et al., 2013). The gist of data depth concept is to quantify438

the centrality or depth of a data sample with respect to an ensemble of data439

samples. In practice, the centrality or depth can be measured by how many440

times a function or contour falls within the band formed by an arbitrary441

set of other functions or contours. Figure 6, adopted from Whitaker et al.442

(2013), shows an example of how to measure the centrality or depth. In443

the left subfigure, three different blue curves form a grey band and three444

red curves are tested against the band. The solid red curve falls completely445

within the grey band, while the two dashed red curves partially fall within446

the grey band. Therefore the data depth of the solid red curve is larger447

than that of the dashed red curves. For contours in the right subfigure, the448

same logic applies. We refer the reader to Whitaker et al. (2013); Mirzargar449

et al. (2014) for more descriptions of the methodology as well as an appli-450

cation in Meteorology. We apply the contour boxplot concept to the LC451

edges obtained from the 49-member HYCOM ensemble. The key effort of452

the contour boxplot is to sort the 49 ensemble contours by their data depth453

defined in Whitaker et al. (2013). The “deeper” data sample is considered454

to be more representative than the “shallower” data sample. The “deepest”455
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data sample can be considered as the most representative ensemble member456

and the “shallowest” data samples can be considered as outliers.457

Figure 7 shows the contour boxplot for the edges of the LC and LC458

Eddies, as defined by the 17 cm SSH contours, at day 30. The satellite SSH459

observation is shown in black for reference. The satellite observations show460

that a LC eddy has separated from the LC at that date, while in the mean461

of the ensemble simulations, indicated by the green line, the LC is still in462

its extended position. On the other hand, the most representative ensemble463

member identified by the median of the ensemble (in yellow) shows a similar464

LC eddy shedding stage compared with the satellite observations. We mark465

the “shallowest” three ensemble members (shown in red) as outliers. It is466

clear that these outliers are still in their early stage for LC eddy shedding467

process, which is somewhat “slow” compared with other ensemble members.468

In the uncertain parameter space, these outliers are the ensemble members469

with extreme negative perturbations in both modes as seen in the inserted470

box in Figure 7.471

Next, we connect the normalized uncertain perturbation to the estimated472

initial condition perturbation pattern. Figure 8 shows the initial perturbation473

approximated by the SSH difference between the perturbed and unperturbed474

runs one day after the start of the simulation. The initial perturbations are475

shown according to their normalized random variables shown in the middle476

of the figure. The bottom left subfigure represents the most negative pertur-477

bations for both EOF modes; the top right subfigure represents the most pos-478

itive perturbations for both EOF modes. The dynamical process associated479

with EOF mode1 (the ξ1 direction) can be explained by the strengthening480
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or weakening of the LC frontal eddies. The signature of EOF mode2 (the ξ2481

direction) is associated with variability along the edge of the LC, as well as482

in the western Gulf of Mexico. These signals strongly affect the intensity of483

the LC frontal eddies, which play an important role in the LC eddy shedding484

process (Le Hénaff et al., 2012a, 2014). The outliers identified by the data485

depth concept in Figure 7 are located at the most negative perturbation of486

EOF mode1, which is consistent with the related dynamical processes: neg-487

ative perturbation on EOF mode1 is associated with the weakening of the488

LC frontal eddies, which delays the LC eddy shedding event.489

5.2. An exploration of SSH PDF490

The estimate of the full PDF usually requires a large sample size. Some-491

times, only the low order statistical moments are calculated on the assump-492

tion that the underlying PDF can be approximated by a normal distribution.493

PC method provides us with an efficient way to estimate the full PDF of a494

model output. We thus investigate whether the underlying distribution of the495

SSH field in the Gulf of Mexico is normal using the PC surrogate constructed496

by the 49-member HYCOM ensemble. We first explore the pointwise SSH497

PDF at different locations in the Gulf of Mexico. In Figure 9, the location of498

four selected points (A1-A4) and the LC edges are shown on the right sub-499

figure. On the left subfigure, the SSH PDF from the four different locations500

are presented. Clearly, the SSH PDF is not always normally distributed. For501

example, the SSH PDF at point A3 along the LC edge shows a bimodal dis-502

tribution whereas the PDF at A2 shows a bias towards higher values. Next,503

we investigate where in the Gulf of Mexico the SSH are normally distributed.504

We reuse the relative entropy metric to quantify the distance between the505
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PC-surrogate PDF and its Gaussian counterpart; this Gaussian counterpart506

is obtained by specifying the mean and variance as calculated from the PC507

surrogate.508

Figure 10 shows the relative entropy map between the SSH PDF in each509

grid cell and its Gaussian counterpart. We only plot the regions where the510

associated relative entropy is larger than or equal to 0.4 and the LC edges511

are also shown in the figure for reference. It is clear that the strongest non-512

Gaussian signal appears in the LC region (indicated by red color), especially513

in the place where the variation in the LC edge is high. This is not surprising,514

as the LC is a highly nonlinear dynamical feature (Oey et al., 2005), so the515

LC region is expected to show non-Gaussian statistic. The relative entropy516

is an efficient tool to identify the locations of highly nonlinear features in an517

ensemble of simulations.518

6. Summary and Discussion519

This paper analyzes two ensembles designed to quantify, using a polyno-520

mial chaos approach, the uncertainties in forecasting the circulation in the521

Gulf of Mexico during the Deep Water Horizon period of May 1 to May522

30, 2010. The two ensembles differed in the sources of uncertainty (initial523

conditions and wind forcing uncertainties) and in the amount of variability524

(number of perturbation modes) accounted for. Both ensembles relied on525

EOF decomposition to perturb the initial conditions and wind forcing fields,526

and considered the amplitude of these modes as the uncertain input param-527

eters. The EOF-based perturbations served to maximize the “amount” of528

input uncertainty using the smallest number of uncertain inputs, so that the529
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size of the ensemble required to sample the uncertain space remains manage-530

able.531

The model data comparison reveals that, in general, the observations fall532

within the envelope of uncertainty generated by the EOF perturbations dur-533

ing the 30-day forecast period. This is particularly true in the target area of534

the LC region where two EOF modes used to perturb the initial conditions535

are enough to capture the variability in the system. On the other hand, the536

altimetry data shows the remnant of a LC Eddy in the western side of the537

basin evolving outside the envelope predicted by the two ensembles. This538

could be explained by an inability of our basin-wide EOF modes to capture539

simultaneously localized uncertainty on the western side of the basin and in540

the LC region, and that the local uncertainty in the western side did not541

project on the first four EOF modes. One remedy is to compute separate542

EOF modes in the Eastern and Western sides of the basin so that the vari-543

ability in the former would not dominate the variability in the latter. Other544

approaches would involve abandoning the EOF decomposition and resorting545

to perturbing the system using either singular modes (Buizza and Palmer,546

1995) or bred vectors (Toth and Kalnay, 1997). However, the computations of547

the singular vectors would require the availability of the tangent linear model548

and its adjoint, and would inccur additional computational costs. Likewise,549

identifying the bred vectors would require running an ensemble of simulations550

prior to obtaining the PC ensemble itself.551

The relative entropy metric was used to quantify the variability loss/gain552

caused by accounting for different uncertainty sources and by including dif-553

ferent “amounts” of input variability. It shows that the variability loss caused554
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by omitting higher EOF modes in the input uncertainty is small, at least for555

the 30 day period considered. This result suggests that adding additional556

input uncertainty sources is more useful than adding high order EOF modes557

of the same uncertainty source. The uncertainty in forecasting the SSH field558

in the shelf regions, for example, is primarily caused by uncertainties in the559

wind forcing while the initial conditions uncertainty plays a secondary role.560

The wind forcing uncertainty adds little to the SSH forecast uncertainty in561

the deep parts of the Gulf where two EOF modes used to perturb the ini-562

tial conditions are enough to account for the forecast uncertainty in these563

regions. The conclusions obtained here using the relative entropy metric are564

consistent with the variance-based sensitivity analysis in Li et al. (2016).565

The analysis of the SSH PDFs shows a strong non-Gaussian signal in566

the LC region, which is reflective of the bifurcation in the state of the LC567

caused by the eddy detachment. Furthermore, the contour boxplot allowed568

us to identify the most representative ensemble member and the ensemble569

outliers.570

The application of uncertainty quantification techniques in ocean mod-571

eling is in its early stages. The most challenging part is to reduce the di-572

mensionality of the problem to minimize the sampling cost of the uncertain573

input space while capturing the largest amount of input uncertainty. The574

PC paradigm emphasizes the link between the input and output uncertain-575

ties by explicit construction of a surrogate, and allows forecasters to identify576

the dominant contributors to the output uncertainties. The efficiency of this577

uncertainty quantification implementation can be applied for model calibra-578

tion to guide the selection of model parameters. The availability of the full579
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output PDF will open the door for data assimilation and predictability study580

in a non-Gaussian paradigm.581
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Figure 1: Illustration of LC, LC Eddy indicated by the black arrows and cyclonic LC
Frontal Eddy indicated by the white arrows. The background is AVISO SSH Anomaly
data at day 20 of the forecast time window. The DWH oil spill location is marked with a
black square.
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Figure 2: The cumulative variance explained by the first 10 EOF modes. The red labels
specify the cumulative variance of the first 4 EOF modes retained in the large ensemble.
The black star indicates the cumulative variance associated with the 2 EOF modes of the
small ensemble, and which is about 50% of the total variance.
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Figure 3: SSH 17 cm contour from HYCOM ensemble (black) and AVISO SSH (white) at
indicated forecast time. The background is AVISO SSH Anomaly data. Top: 49-member
HYCOM ensemble; Bottom: 798-member HYCOM ensemble.
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Figure 4: Temporal mean velocity and standard deviation ellipses at different depth built
from 9 Bureau of Ocean Energy Management (BOEM)/Science Applications International
Corporation (SAIC) full-depth mooring data (blue) and HYCOM ensemble (black and
red). The period is from 05/01/2010 to 05/30/2010. Left: 49-member HYCOM ensemble;
Right: 798-member HYCOM ensemble.
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(d)
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WF:0, 0, 0, 0

(e)
EOF Modes
IC:0, ξ2, 0, 0
WF:0, 0, 0, 0

Figure 5: The relative entropy measures the SSH variability loss when variabil-
ity/uncertainty in the input data is reduced. In all cases shown the reference pdf q refers
to perturbing all 8 EOF modes while the pdf p refers to perturbing only a subset of these
modes. The unperturbed modes have their amplitudes set to 0 and correspond, from top
to bottom, to the 5 scenarios shown in table 2. Areas with no variability loss appear in
blue. The abbreviation IC and WF refer to Initial Condition and Wind Forcing modes,
respectively.
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Figure 6: Examples of the generalization of boxplot to curves and contours, adopted
from Whitaker et al. (2013). Left: a grey band is formed by three different blue curves
and three red curves are test against the band, with only the solid red curve falls completely
within the grey band. Right: a red curve falls completely within the light grey band formed
by three blue contours.
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Figure 7: Contour boxplot of the edges of the LC and LC Eddy of the 49-member HYCOM
ensemble. All HYCOM ensemble contours are color coded according to the legend. The
inserted box shows the location, in the parameter space, of the various simulations of the
ensemble with the corresponding color code. The satellite SSH LC edge is shown in black
for reference. The edges of the LC and LC Eddy from the mean of the ensemble is in
green.
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Figure 8: Initial Condition perturbation in SSH according to their normalized random
variables (shown in the center). The perturbation is represented by the difference in SSH
between the perturbed run and the unperturbed run 1 day after the start of the simulation.
The LC contour of the unperturbed simulation is added for reference. The bottom left
subfigure represents the most negative perturbations for both EOF modes; the top right
subfigure is the most positive perturbations for both EOF modes.
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Figure 9: Left: SSH PDF from the ensemble simulations at day 30, sampled at four
different locations indicated by the map on the right. Right: The contours on the map
shows the LC edge from ensemble simulations represented by the 17cm SSH Anomaly
contour. The red contour is the unperturbed simulation.

44



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
  98oW   95oW   92oW   89oW   86oW   83oW   80oW 

  21oN 

  23oN 

  25oN 

  27oN 

  29oN 

 

 

Day30

Relative entropy => 0.4

0.2 0.4 0.6 0.8 1 1.2

Figure 10: Relative entropy, at day 30, between the ensemble SSH PDF and the Gaussian
PDF calculated with the ensemble mean and variance estimated from the PC analysis.
The color shows only the region where the relative entropy is greater than 0.4. The black
contours are ensemble LC contours for reference.
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